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A general ~nonvariational! globally constrained reaction-diffusion equation~GCRDE! with bistability is
employed for studying the dynamics of two-dimensional non-single-connected domains: circular spots of one
phase with inclusions of another phase. In the sharp-interface approximation, the dynamics is describable by a
set of coupled ordinary differential equations which have a universal form. It is shown that domains with a
single inclusion always develop topological singularity in a finite time: the inclusion either shrinks to zero, or
breaks out. The results are supported by numerical simulations with the full GCRDE.
@S1063-651X~96!02311-2#

PACS number~s!: 82.40.Ck, 82.20.Mj

Bistable reaction-diffusion systems with global con-
straints are probably the simplest continuous systems show-
ing two-phase segregation, coexistence@1,2#, and coarsening
@3–5#, and they have appeared in various applications~elec-
trothermal domains in semiconductors, metals, and super-
conductors@6#, thermal contraction in weakly ionized plas-
mas @7#, bistable heterogeneous chemical reactions@8#,
radiative condensations in optically thin plasmas@9,10#, etc!.
In spite of their simplicity, these systems can have quite a
rich dynamics, as they cannot be reduced, in general, to a
gradient flow. The most transparent evidence for this nonva-
riational behavior is the limit-cycle-type domain dynamics
that were experimentally observed and theoretically inter-
preted in recent years@6,11#. Also, it has been found recently
@5# that, under quite general conditions, the dynamics of a
large number of simple domains~‘‘spots’’ !, as described by a
general globally constrained reaction-diffusion equation
~GCRDE! with bistability, can be mapped into a mean-field
model of Ostwald ripening~OR! @12–14#. In contrast to the
‘‘conventional’’ mean-field models of OR, this particular
model is ‘‘almost exact,’’ as it does not require a small vol-
ume or area fraction@5#. In this paper we report on another
interesting property of the GCRDE with bistability: topologi-
cal singularities that develop in non-single-connected do-
mains ~spots of one phase with inclusions of the other
phase!.

Consider a reaction-diffusion equation for a scalar order
parameteru(r ,t) in a scaled form:

]u

]t
5¹2u1 f ~u,p!. ~1!

Here p(t) is an additional, ‘‘global’’ parameter~inhibitor!.
In the case of bistability, the functionf (u,p) has, at fixed
p, three zeros,u1(p),uu(p),u2(p), such that] f /]u,0
for u5u1,2 ~locally stable phases 1 and 2! and .0 for
u5uu ~unstable phase!. The dynamics of the inhibitor is
governed by a global constraint,

E
V
K@u~r ,t !,p~ t !#dr5const . ~2!

The problem is defined on a finite planar domainV, the area
of which isS. Equation~2!, introduced in Ref.@5#, general-
izes a number of previously employed global constraints
~such as constant voltage, constant average temperature,
mass conservation, etc.!. Complemented with initial and
boundary conditions, Eqs.~1! and~2! represent a closed set.

Assume for simplicity that none of the functionsf and
K nor their derivatives introduce any small or large param-
eters, and that all characteristic domain sizes are much larger
than the width of the interphase boundary~which is of order
unity!. Let there exist a special value of the inhibitor,
p5p* , for which the area rule,

E
u1~p!

u2~p!

f ~u,p!du50 , ~3!

holds. Forp5p* , a planar interface, separating the regions
of the phase 1 and phase 2@with the order parameter values
U1,25u1,2(p* )#, would be in equilibrium~see, e.g.,@1,2#!.
Whenp deviates fromp* and/or the interface is curved, the
domains will either shrink or expand. We assume that the
globally constrained two-phase coexistence is stable with re-
spect to the fast mode instability@6,11# ~which, when it de-
velops, typically has a growth rate of order unity!. The cor-
responding condition ~so-called Elmer’s inequalities!
imposes certain limitations on the functionsf and K and
their partial derivatives with respect tou andp.

Let n be the normal to the interface directed from phase 1
to phase 2. The~slowly time-varying! normal interface speed
is given by

cn~ t !52gdp~ t !2K~ t !, ~4!

where the inhibitor mismatchdp5p2p* is assumed to be
small, andg is a numerical factor of order unity that can be
calculated analytically once the functionf (u,p) is known
@1#. In addition,K is the~small! local curvature of the inter-
face, defined to be positive if the interface is convex towards
phase 2 and negative otherwise.

The dynamics of a small inhibitor mismatchdp is gov-
erned by the following relation@5#:
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ddp

dt
52S dp1

^K&
g D gL@K~U2 ,p* !2K~U1 ,p* !#

S1
dK

dp*
U
1

1S2
dK

dp*
U
2

, ~5!

where S1,2 are the total areas of phases 1 and 2
(S11S25S), L is the total length of the interfaces between
the two phases,̂& means averaging over all interfaces, and

dK

dp*
U
1,2

5
]K

]p*
U
u5U1,2

1
]K

]u U
u5U1,2

du1,2
dp*

.

The sharp-interface equations~4! and ~5! were employed
in Ref. @5# to solve analytically a number of model problems
of stability of and competition between single-connected do-
mains. In the following we shall use both the sharp-interface
equations and the full system of Eqs.~1! and ~2! to analyze
the dynamics of non-single-connected domains. We shall see
that these dynamics look quite different.

Consider a single circular spot of, say, phase 1 withN
circular inclusions of phase 2. The circular-interface model is
justified in view of stability of a circular interface with re-
spect to azimuthal deformations@5#. Let the spot radius be
R, and the inclusion radii ber i,R, i51,2, . . . ,N. Assume
thatdp is sufficiently small, and allr i@1, so that we can use
the sharp-interface equations~4! and ~5!. We immediately
arrive at the following set of ordinary differential equations:

Ṙ52gdp2
1

R
, ~6!

ṙ i5gdp2
1

r i
, i51,2, . . . ,N ~7!

d ṗ52egdpSR1(
i51

N

r i D 1e~N21!, ~8!

where

e5
2p@K~U2 ,p* !2K~U1 ,p* !#

S~dK/dp* !u2
,

and we have assumed for simplicity thatpR2!S. Notice
that the averaged curvature^K& vanishes and does not con-
tribute to Eq.~8! in the case ofN51 ~a single inclusion!.
Particular forms of functionsf andK enter Eqs.~6!–~8! only
through the factorsg and e. Furthermore, these factors can
be eliminated altogether if we introduce scaled variables,
R̃5(eg)1/3R, r̃5(eg)1/3r , and P5e21/3g2/3dp, and scaled
time t̃5(eg)2/3t. As the result, the governing equations take
a universal form:

Ṙ52P2
1

R
, ~9!

ṙ i5P2
1

r i
, i51,2, . . . ,N ~10!

Ṗ52PSR1(
i51

N

r i D 1N21 , ~11!

where we have omitted all tildes. Equations~9!–~11! have
the following first integral:

P2
1

2 SR22(
i51

N

r i
2D 5C5const . ~12!

In what follows we consider the dynamics of a spot with
a single inclusion of a radiusr . In this case, instead ofN
equations~10!, we have a single equation

ṙ5P2
1

r
, ~13!

Equation~11! becomes

Ṗ52P~R1r !, ~14!

while the first integral~12! takes the form

P2
1

2
~R22r 2!5C5const. ~15!

The inclusion of phase 2 is, in general, nonconcentric with
the spot, and we shall denote the scaled eccentricity~the
intercenter distance between the spot and the inclusion! d. It
is seen from Eqs.~9! and ~13! that a non-single-connected
domain cannot be in equilibrium. Furthermore, topological
singularity always develops in a finite time. The first type of
singularity corresponds to the inclusion shrinking to zero,
r→0. The second one can be called reconnection, and it
occurs when the difference of the radiiR2r becomes equal
to the ~invariable! eccentricityd. In both cases, the domain
becomes single connected after singularity.

To clarify the matter, let us start with the simplest case of
P(t50)5P050 ~that corresponds to the area-rule value
p5p* ), when a simple analytic solution of Eqs.~9!, ~13!,
and~14! is available. It follows from Eq.~14! thatP remains
zero for all t.0, and Eqs.~9! and ~13! are immediately
solved. Both the spot radiusR and the inclusion radiusr
decrease with time, and the inclusion radius reaches zero
first:

r ~ t !5r 0~12t/ts!
1/2,

wherets5r 0
2/2 is the shrinkage time, andr 05r (t50). Up to

the shrinkage timets , the spot radiusR behaves like

R~ t !5R0@122t/R0
2#1/2

@whereR05R(t50)#. For t.ts Eqs. ~13! and ~14! are not
applicable anymore. As topology changes and the spot be-
comes single connected, one should again employ Eq.~5! to
get a new equation forṖ. In the same scaled variables, this
equation is the following:

Ṗ52PR21, ~16!

which, combined with Eq.~9!, determines the further evolu-
tion of the single-connected spot@5#. The first integral be-
comes simply
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P2
R2

2
5const ~17!

and the problem is integrable. Depending onR0, the remnant
spot either shrinks to zero or approaches a stable equilibrium
with a finite value ofR.

Now let us consider a nonzeroP0. It follows from Eq.
~14! that uPu decreases with time, while the sign ofP does
not change. It is easy to see that, ifP0 is negative, the inclu-
sion always shrinks to zero. Indeed,P remains negative for
all t @see Eq.~14!#, and the right-hand side of Eq.~13! is
always negative and larger by the absolute value than the
right hand side of Eq.~9!. The shrinkage to zero always
develops in a finite timets ~which, for the sameR0, is
smaller than its value forP50). Near the singularity, the
21/r term in Eq.~13! dominates, so that the leading term in
the asymptotics ofr (t) neart5ts is @2(ts2t)#1/2. At t5ts ,
the spot becomes single connected, and its further evolution
proceeds according to the sharp-interface equations~9!, ~16!,
and ~17!.

The case of a positiveP0 is more complicated, as singu-
larities of both types are possible, depending, in addition, on
the eccentricityd and on the initial values of the radii. We
found two sufficient conditions, one for shrinkage to zero
and one for reconnection, in terms of the value of the first
integral C @see Eq. ~15!#. First, if C,C152(1/2)d(R0
1r 0), shrinkage always occurs. This can be proved in the
following way. Introduce the reconnection parameter
h5R2r2d>0, so thath50 corresponds to reconnection.
The first integral~15! can be rewritten as

C5P2
1

2
~d1h!~R1r !.

For P.0 andC,C1 the double inequality

2
1

2
~d1h!~R1r !,C,C1

holds. It follows that

~R1r !h.d@R01r 02~R1r !#.

Now, the sum of the radii,R1r , always decreases in time@it
can be checked by adding up Eqs.~9! and~13!#; therefore the
right hand side of the last inequality is positive for all
t.0. It follows thath remains positive, and no reconnection
is possible, which means shrinkage to zero.

On the other hand, ifC.C2, where

C25
1

r 0
2
d~2r 01d!

2
,

then reconnection always occurs. To prove it, we first prove
thatC.C2 implies P0.1/r 0, so thatr (t) increases in time
~at least, initially!. Indeed, the inequalityC.C2 can be re-
written as

P0.
1

r 0
1
1

2
~R0

22r 0
222dr02d2!,

which, combined withR02r 02d.0, leads toP0.1/r 0.
This means thatr (t) increases monotonically, so that recon-
nection is inevitable~remember thatR1r decreases with
time!.

One might think of another possibility: there might be a
moment of timet* for which r (t) reaches its maximum
value r * before reconnection. In fact, this possibility does
not exist: reconnection occurs beforer (t) can reach its maxi-
mum. Indeed, a maximum forr (t) would mean that
P*51/r * at t5t* @see Eq.~13!#. Obviously, in this case
1/r * must be less than 1/r 0. On the other hand, if there is no
reconnection, thenR*2r *2d.0 and we have

1

r *
5P*5C1

1

2
~R*

22r *
2!.C1

1

2
d~R*1r * !.C

1
1

2
d~2r *1d!.C1

1

2
d~2r 01d!

5C2C21
1

r 0
.

SinceC.C2, we arrive at 1/r *.1/r 0, which contradicts our
assumption. ThereforeC.C2 indeed represents a sufficient
condition for reconnection.

We can reformulate these two criteria in the following
way. Introduce

P15
1

2
~R01r 0!~R02r 02d! ~18!

and

P25
1

r 0
1
1

2
~R01r 01d!~R02r 02d!. ~19!

Obviously, 0,P1,P2. Then shrinkage to zero always oc-
curs for P0,P1, while reconnection always occurs for
P0.P2. Our numerical simulations with the sharp-interface
equations~9!, ~13!, and ~14! show that a critical valuePc
exists somewhere betweenP1 and P2, so that inequality
P0,Pc (P0.Pc) represents the necessary and sufficient
condition for shrinkage to zero~reconnection!.

Close to a singularity, the sharp-interface theory breaks
down. Therefore we performed numerical simulations with
the full model equations~1! and~2!. For the simulations we
chose

f ~u,p!52~u21!S u2
1

pD ~u23! ~20!

andK(u,p)5up. Then Eq.~2! yields an explicit equation
for p(t):

p~ t !5p~0!
*Vu~r ,0!dr

*Vu~r ,t !dr
. ~21!

Also, for this choice of f and K one obtains p*
51/2, g54A2, and e52p/3S. One can check that the
Elmer inequalities@11,5# are satisfied in this case, so that the
fast mode instability is suppressed. In addition, the theory of
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Ref. @5# predicts stability of a planar interface, so that the
long-time dynamics is affected by the interface curvature.

For the simulations we used a technique described in the
Appendix. Typical simulation results are shown in Figs. 1–4.
The initial conditions represented a non-single-connected do-
main with a single inclusion and nonconcentric circular
boundaries. Figures 1 and 2 refer to the case of
p(0)5p*50.5 ~area-rule value!. In this case the sharp-
interface theory predicts shrinkage of the inclusion to zero
under a constantp, followed by the evolution of the single-
connected remnant domain according to Eqs.~16! and ~17!.
Figure 1 shows the evolution of theu field and indeed dem-
onstrates shrinkage of the inclusion to zero. In Fig. 2 are
shown theoretical and numerical results forp(t). Until the
shrinkage time,p remains very close to 0.5, as predicted.

The small peak near the shrinkage time is not described by
the sharp-interface theory, which becomes inapplicable here.
After the shrinkage, there is only a single-connected circular
spot left. The solution of the sharp-interface equations~16!
and ~17! ~dashed curve! is in a good agreement with the

FIG. 1. Simulation results for the time evolution of the field
u(x,y) in the case of the inclusion shrinking to zero. The box size
is 1003100, the number of grid points is 2573257. The initial
values of the spot and inclusion radii and eccentricity are 25, 15,
and 3, respectively, whilep(0)50.5. Snapshotsa, b, c, and d
correspond tot50, 105, 109, and 400, respectively.

FIG. 2. Graphs ofp versus time in the case of the inclusion
shrinking to zero. The solid line represents the result of simulations
shown in Fig. 1. The dashed line is the prediction of the sharp-
interface theory.

FIG. 3. Simulation results for the time evolution of the field
u(x,y) in the case of reconnection. The box size and grid are the
same as in Fig. 1. The initial values of the spot and inclusion radii
and eccentricity are 35, 8, and 17, respectively, whilep(0)50.6.
Snapshotsa, b, c, d, e, andf correspond tot50, 11.5, 13.5, 25, 95,
and 350, respectively.

FIG. 4. Graphs ofp versus time in the case of reconnection. The
solid line represents the result of simulations shown in Fig. 3. The
dashed line is the prediction of the sharp-interface theory until the
time of reconnection.
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simulation results~solid curve!, as the spot is approaching a
stable equilibrium.

Figure 3 shows the evolution of theu field for a different
initial condition for p which corresponds~according to our
sufficient conditionP0.P2) to reconnection. Figure 3 dem-
onstrates that reconnection indeed occurs, and it is followed
by symmetrization of the spot and relaxation to a stable
circular-spot equilibrium. Figure 4 shows the corresponding
numerical~solid line! and theoretical~dashed line! curves for
p(t). The theoretical curve represents the solution of Eqs.
~9!, ~13!, and ~14!, and it describes the dynamics very well
until the time of reconnection. After the reconnection the
remnant spot boundary is not circular anymore, and the
sharp-interface equations are insufficient for describing the
dynamics ~until the spot shape becomes close to circular
again!.

Possible experiments on the topological singularities in-
clude the systems the reduced dynamics of which are de-
scribable by the GCRDE. Schimansky-Geieret al. @3# give
examples of thermokinetic systems with bistable behavior of
concentrationn, inhibited by temperatureT ~like magnetic
superconductors, where first-order phase transition to the fer-
romagnetic phase at low temperatures destroys superconduc-
tivity !. If the temperature variableT is fast, it becomes en-
slaved by the concentration. It turns out that the relation
betweenT and n in this situation is nonlocal@3#, which
represents a particular case of global constraint~2!.

In summary, we have employed the sharp-interface equa-
tions to study the dynamics of two-dimensional non-single-
connected domains in a nonvariational GCRDE. We have
found and analyzed analytically and numerically the topo-
logical singularities developing in domains with a single in-
clusion. The sharp-interface theory correctly predicts the
type of singularity~shrinkage of the inclusion to zero, or
reconnection! and gives a complete description of the dy-
namics until the time of singularity. In the case of shrinkage
to zero, the sharp-interface theory describes essentially the
whole dynamics, including the relaxation of the single-
connected remnant spot to a stable equilibrium.

We acknowledge a useful discussion with L. Friedland.
This research was supported in part by a grant from the Israel
Science Foundation.

APPENDIX

The simulations with the system~1!, ~21! were performed
in the following way. Equation~1! was solved using an im-
plicit pseudospectral approach. Consider a square box on a
two-dimensional square grid, with theu field defined at the
sites of the grid. We chose the no-flux boundary condition

(¹u)n50. The u field on the grid is transformed into the
Fourier space, so that the partial differential equation~1! for
u(x,y,t) is replaced by a set of ordinary differential equa-
tions for its Fourier harmonicsūkx ,ky:

]ūkx ,ky
]t

52~kx
21ky

213!ūkx ,ky1w̄kx ,ky
, ~A1!

where we have separated the time-independent part of the
linear term of the polynomialf (u,p) @see Eq. ~20!#:
f (u,p)523u1w(u,p).
The solution of Eq.~A1! on the interval (t;t1Dt) can be

formally written as

ūkx ,ky~ t1Dt !5e2~kx
2
1ky

2
13!DtF ūkx ,ky~ t !1E

t

t1Dt

dt8

3w̄kx ,ky
~ t8!e~kx

2
1ky

2
13!~ t82t !G .

For smallDt we can rewrite it in the trapezoid approxima-
tion:

ūkx ,ky~ t1Dt !5e2~kx
2
1ky

2
13!DtF ūkx ,ky~ t !1

Dt

2
w̄kx ,ky

~ t !G
1

Dt

2
w̄kx ,ky

~ t1Dt !. ~A2!

Let us define a new functionv5u2(Dt/2)w. Then the im-
plicit scheme~A2! takes the form

v̄k~ t1Dt !5e2~kx
2
1ky

2
13!Dt@2ūk~ t !2 v̄k~ t !#. ~A3!

Therefore, in order to findu(t1Dt), one has to calculate
ū(t) and v̄(t) @the Fourier transforms ofu(t) andv(t), re-
spectively#, then calculatev̄(t1Dt) using Eq.~A3!, return to
the real space, and finally findu(t1Dt) as a solution of the
following algebraic equation:

v2u1
Dt

2
w~u!50 . ~A4!

By virtue of the small value ofDt, we are interested in the
root for which a relationu5v1O(Dt) holds. Since Eq.~A4!
is a cubic equation, this root can be found explicitly. The
Fourier transformations were performed by a real cos-FFT
~fast Fourier transform! routine in view of the no-flux bound-
ary conditions, whilep(t) was advanced according to a dis-
cretized version of Eq.~21!.
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